Towards an axiomatic approach in Linguistics

with a special focus on segmental grammar

Artemij Keidan (Sapienza University of Rome) – September 21, 2023

Main goals

- How do we know whether a statement is true or false, in linguistics?
- How can we compare two grammars?
- How do we uncover the logic on which a grammar is based?
 - with a special focus on the segmental domain

Some premises

- Linguistics = grammar writing
- Language = finite corpus of sentences
- Grammar = a cascade of representations/levels + mapping rules between them
 - grammar is constructed rather than "extracted"
- Representations (levels) form a hierarchy, from phonetics to semantics
- ★ Examples of rewriting rules (in segmental gr.):
 ph→PH, PH→ph, mPH→PH

Intuitive theories

- Traditional/intuitive theory (roughly) = a set of propositions about reality
 - verification is obtained from empirical data
- Intuitive theory in linguistics = traditional descriptive grammar
- data based verification has two weaknesses:
 - the data are vague
 - the data address the easiest questions only

Intuitive theories in linguistics

E.g.: given a sound sample, which transcription is the correct one?

 $[hju] \sim [hu] \sim [h^ju] \sim [cju] \sim [hy] ecc.$

E.g.: given a list of word-forms, how do we classify them?

Eng. *love*: N, V or "N-V"?

Rus. druga: AccSg or GenSg of drug 'friend'?

Intuitive theories in linguistics

E.g.: formant dispersion (Italian vowels):

7

Intuitive theories in linguistics

- Intuitive/traditional grammars are, therefore:
 - falsely empirical: data are constructed anyway
 - empirical verification is a myth
 - too depending on grammarian's arbitrary decisions
 - impossible to evaluate or to compare
 - which grammar of Old Slavic is better?
 - how do two grammars of Old Slavic even differ?

Axiomatization

- Intuitive theories may be redefined in axiomatic form
- Axiomatic theory is detached from verification
 - logic and proof from data and truth
- Axiomatic theory = set of provable formulas
 - axioms = formulas assumed as proven
 - theorems = formulas inferred from axioms
 - rules of inference are purely formal

Axiomatization

- In order to obtain semantic values, a theory must be applied to a model
- Model = set of propositions + interpretation
 - variables of the theory take values from the objects in the model
 - formulas of the theory translate into propositions in the model
 - axioms of the theory correspond to true propositions in the model

Example: Groups

- Signature:
 - non-empty set G
 - binary operation "•"
- Axioms
 - associativity: for all *a*, *b* and *c* in G, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
 - identity: e exists in G such that, for all a in G, $a \cdot e = e \cdot a = a$
 - inverse: for each *a* in G, *b* exists, such that $a \cdot b = b \cdot a = e$

Example: Groups

- Is $(\mathbb{Z}, +)$ a group?
 - for all *a* , *b* and *c* in \mathbb{Z} , (a+b)+c = a+(b+c)
 - 0 is in \mathbb{Z} , and, for all a in \mathbb{Z} , a+0 = 0+a = a

e.g.: 3 + 0 = 0 + 3 = 3

- for each *a* in \mathbb{Z} , exists *b*, such that a+b = b+a = 0

e.g.: 5 + (-5) = (-5) + 5 = 0

Example: Groups

- Also groups:
 - $(\mathbb{R}, +)$
 - $(\mathbb{Q},\cdot\,)$
- Not groups:
 - (ℕ, +) (ℤ, ·)

Axiomatization

- Models in Mathematics are invented
- Models in empirical sciences are retrieved from empirical data
- Advantages of axiomatization:
 - logical structure is detached from the truth
 - verification is formal, rather than empirical
 - theories become comparable
 - they may differ in signature, axioms or interpretation rules

- Axiomatic theory = abstract grammar, roughly:
 - variables = "empty tables", "empty inventories"
 - axioms = correctness criteria limiting how levels are mapped, tables are filled
- Model = specific grammar
 - take a finite corpus of textual data
 - populate tables and inventories
 - ...respecting the axioms

 E.g.: fragment of an abstract grammar of Latin (morphology)

	Singular	Plural
Nom		
Gen		
Dat		
Acc		
Abl		

Consider a list of latin word-forms (in alphabetical order):

..., lup=a, lup=ae, lup=am, lup=arum, lup=as, lup=i, lup=is, lup=o, lup=orum, lup=os, lup=us, ...

- Let's use these forms to populate the empty tables of the abstract grammar
 - respecting the correctness criteria of morphology

- Consider the axioms of morphology (approx.):
 - 1. no word-form of a lexeme can be left outside
 - 2. no cell can remain empty in all lexemes
 - 3. any pair of cells must contain different wordforms in at least one lexeme
 - 4. no cell can contain multiple word-forms
 - 5. ecc.

E.g.: fragment of a specific grammar of Latin

	Singular	Plural
Nom	lup=us	lup=i
Gen	lup=i	lup=orum
Dat	lup=o	lup=is
Acc	lup=um	lup=os
Abl	lup=o	lup=is

- The preceding table is correct because it respects the axioms
 - not because it is a "faithful picture of the Latin language"
 - (in fact, alternative grammars are possible)
- The following table is not correct because it does not respect the axioms
 - not because it contradicts "Latin language"
 - (corpus comes unlabelled)

 E.g.: fragment of specific grammar of Latin, different solution

	Singular	Plural
Nom	lup=us, lup=a	lup=i, lup=ae
Gen	lup=i, lup=ae	lup=orum, lup=arum
Dat	lup=o, lup=ae	lup=is
Acc	lup=um, lup=am	lup=os, lup=as
Abl	lup=o, lup=a	lup=is

 E.g.: fragment of an abstract grammar of Italian (phonological inventories)

	Fro	ont	Cen	tral	Ba	ck
	+lab	-lab	+lab	-lab	+lab	-lab
High						
Mid						
Low						

- Consider the axioms of phonological inventories:
 - 1. no row or column must be empty
 - 2. no cell can contain more than one symbol
 - 3. no symbol can appear in more than one cell
- Therefore, the following table is not correct

 E.g.: fragment of a specific grammar of Italian (phonological inventories)

	Fro	ont	Cen	tral	Ba	ck
	+lab	-lab	+lab	-lab	+lab	-lab
High		i			u	
Mid		e, ε			0, J	
Low				а		

- In order to obtain a correct table, I can
 - either change the interpretation of data = arrange the vowels differently
 - no such arrangement is known to me
 - dismiss the abstract grammar as incorrect
 - then create a new abstract grammar
 - populate the table with the same date (see the following tables)

 E.g.: fragment of a specific grammar of Italian (phonological inventories)

	Front	Central	Back
High	i		u
Mid-high	е		0
Mid-low	3		С
Low		а	

 E.g.: fragment of a specific grammar of Italian (phonological inventories)

	Front	Central	Back
High	i		u
Mid	е		0
Low	3	а	С

Segmental levels

- mPH = morphophonological level
 - formatives maintain a constant segmental form
- PH = phonological level
 - minimal inventory of segments
- ph = phonetic level
 - non minimal inventory, more articulatory details

Segmental levels

- ◆ The input to mPH comes from the "inflectional request" ≈ interface with morphology
- The mapping rules within the segmental domain must be contextual
- The mapping rules in the preceding levels are non-contextual
 - rules InflR→mPH are non contextual
 - e.g.: InflR $Pl(cat) \rightarrow mPH cat.s$

Segmental levels

- Possible types of rules:
 - Bijection: $\sigma_1 \rightarrow \sigma_1$ in all contexts
 - Fork: $\sigma_1 \rightarrow \sigma_2$ in context K_1 and $\sigma_1 \rightarrow \sigma_3$ in context K_2
 - Merger: in some context $\sigma_1 \rightarrow \sigma_2$ and $\sigma_3 \rightarrow \sigma_2$
 - Deletion: in some context $\sigma_1 \rightarrow \emptyset$

Types of rules

- A_1 Every utterance can be represented as a linear sequence of segments
 - Segmental representation must be possible, but A₁ says nothing on how do we get it

A₂ — In segmental grammar we consider monolateral strings of segments.

- there is no meaning in segmental grammar
- if two forms correspond to the same string, it means they are the same form

homonymy is not possible

- A₃ Every word-form is given in three representations: mPH, PH and ph.
- Morphophonological (mPH) representations are stored in the dictionary
- the other two can be constructed by means of mapping rules
 - e.g. Polivanova's Slavic grammar

- A₄ PH has the minimal distinctive inventory
- Minimal pairs must be in PH form
- It is always true that distinctivity \Rightarrow phonemes
- The opposite implication may be not true

- A₅ Inventories of mPH and PH coincide.
- unlike in "traditional morphophonology"
- There is no limiting criterion for "morphophonemes"
- Mapping rules mPH→PH are a manipulation of phonemes

Excursus on "morphophonemes"

InflR	Sg(<i>parco</i>) 'park'	Pl(<i>parco</i>) 'parks'	Sg(<i>medico</i>) 'doctor'	Pl(<i>medico</i>) 'doctors'	Sg(<i>carne</i>) 'meat'
mPH	park ₁ +o	park ₁ +i	mɛdik ₂ +o	mεdik ₂ +i	k?arn+e
PH	parko	parki	mɛdiko	mɛdiţji	karne
ph	parko	parki	mɛːdiko	mɛːdiţ∫i	karne

Our morphophonemics

InflR	Sg(<i>parco</i>) 'park'	Pl(<i>parco</i>) 'parks'	Sg(<i>medico</i>) 'doctor'	Pl(<i>medico</i>) 'doctors'	Sg(<i>carne</i>) 'meat'
mPH	park+o	park+i	mεdik+o	mɛdiʧ+i	karn+e
PH	parko	parki	mɛdiko	mɛdiţſi	karne
ph	parko	parki	mɛːdiko	mɛːdiţſi	karne

 A_6 — All the mapping rules within the domain of segmental grammar must be contextual.

- These rules are: mPH \rightarrow PH, PH \rightarrow ph, ph \rightarrow PH.
- All such rules must work in every occurrence of the relevant segment
- If a rule cannot be defined contextually, this rule does not exist
 - thus, there are no contextual rules from PH to mPH

A₇ — Mergers are only allowed in the mapping rules mPH \rightarrow PH

- mPH→PH rules are destructive: they destroy segmental information
 - consequence: there are no rules $PH \rightarrow mPH$
- The other rules cannot be destructive

Example of a destructive rule

InflR	PartSgm(<i>piangere</i>) 'to cry'	Pres1Sg(<i>piantare</i>) 'to plant'
mPH	pjanʤ.t=o	pjant=o
	[deletion occurs]	
PH	pjanto	pjanto
ph	pjanto	pjanto

Example of a destructive rule

InflR	PartSgm(<i>piangere</i>) 'to cry'	Pres1Sg(<i>piantare</i>) 'to plant'	
mPH	pjanʤ.t=o	pjant=o	
	[merger of	two forms]	
PH	pjanto		
ph	pja	anto	

Some theorems

- ✤ Theorem 1. There are no PH→mPH rules.
 - A₆: all segmental rules must be contextual
 - A₇: only mPH→PH rules admit mergers and deletions
 - Once a segment has been deleted, you cannot restore it from the context
 - PH→mPH rules would require non-contextual information
 - Therefore, there PH→mPH rules do not exist

Some theorems

- Theorem 2. Reversibility of PH and ph.
 - A₇: only mPH \rightarrow PH rules admit mergers
 - Rules PH→ph do not admit mergers
 - but admits forks!
 - Information is not destroyed
 - Therefore we can always restore PH from ph
 - there is no such thing as phonemes' neutralization

On shared allophones

Our analysis of the flapping rule

	writer	rider	
mPH	raıtər	raıdər	
	[substitute /t/ \rightarrow /d/ between vowels, after stress]		
PH	raidər	raıdər	
	[flap $/d/ \rightarrow [r]$	between vowels]	
ph	rairər	rairər	

Some theorems

- Theorem 3. Boundaries between formatives are only visible in mPH.
 - A₇: only mPH \rightarrow PH rules admit mergers
 - Phonemes surrounding a boundary may be subject to a merger:

mPH α . $\beta \rightarrow$ PH μ

Therefore, formative boundaries are not warranted in PH and ph

Some Italian facts in our analysis

	<i>infatti</i> 'in fact'	<i>impari</i> 'uneven'	<i>tramvia</i> 'tramway'
mPH	in.fatti	i <mark>n</mark> .pari	tram.via
		n→m/_p	m→n/_v
PH	infatti	impari	tranvia
	n→m/_f		n→m/_f
ph	i <mark>m</mark> fatti	impari	traŋviːa

Some Italian facts in our analysis

	<i>tempo</i> 'time'	<i>temporale</i> 'temporal'	<i>tono</i> 'tone'	<i>tonale</i> 'tonal'
mPH	témp=o	t <mark>ɛ</mark> mp.or.ál=e	tón=o	t <mark>on.ál=e</mark>
		ε→e/unstressed		o→o/unstressed
PH	témpo	t <mark>e</mark> mporále	tóno	tonále
		a→aː/stressed	<mark>ɔ→ɔː/</mark> stressed	a→aː/stressed
ph	témpo	temporáːle	tóːno	tonáːle

Some Russian facts in our analysis

	NomSg(<i>kod</i>) 'the code'	GenSg(<i>kod</i>) 'of the code'	NomSg(<i>kot</i>) 'the cat'	GenSg(<i>kot</i>) 'of the cat'
mPH	kod	kod=a	kot	kot=a
	devoicing/#			o→a/unstressed
PH	kot	koda	kot	kata
ph	kot	koda	kot	kata

Some Russian facts in our analysis

	LocSg(<i>los^j</i>) 'in the moose'	LocSg(<i>lisa</i>) 'in the fox'	NomSg(<i>urok</i>) 'in the lesson'
mPH	los ^j =e	li <mark>s</mark> =e	urok=e
		palatalization/e	
PH	las ^j e	li <mark>s</mark> ^j e	uroke
			palatalization/e
ph	las ^j e	lis ^j e	urok ^j e

In conclusion

- Let's answer some of the opening questions
- A grammar that respect the axioms is a good grammar
- There may be multiple grammars of the same language, all equally good
- No grammar can be considered a "better picture" of the language data
- The differences among grammars may be located in the axioms, signature or interpretation